Abstract

We developed a method for two-dimensional space-resolved emission spectroscopy of laser-induced plasma in water to investigate the spatial distribution of atomic species involved in the plasma. Using this method, the laser ablation plasma produced on a Cu target in 5 mM NaCl aqueous solution was examined. The emission spectrum varied considerably depending on the detecting position. The temperature and the atomic density ratio NNa/NCu at various detecting positions were evaluated by fitting emission spectra to a theoretical model based on the Boltzmann distribution. We are successful in observing even a small difference between the distributions of the plasma parameters along the directions vertical and horizontal to the surface. The present approach gives direct information for sound understanding of the behavior of laser ablation plasma produced on a solid surface in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call