Abstract
Van der Waals (vdW) epitaxial growth of large-area and stable two-dimensional (2D) materials of high structural quality on crystalline substrates is crucial for the development of novel device technologies. 2D gallium monochalcogenides with low in-plane symmetry stand out among the layered semiconductor materials family for next-generation optoelectronic and energy conversion applications. Here, we demonstrate the formation of large-area, single crystal and optically active 2D monoclinic gallium telluride (m-GaTe) on silicon substrate via rapid thermal annealing induced phase transformation of vdW epitaxial metastable hexagonal gallium telluride (h-GaTe). Stabilization of multilayer h-GaTe on Si occurs due to the role of the first layer symmetry together with efficient GaTe surface passivation. Moreover, we show that the phase transformation of h-GaTe to m-GaTe is accompanied by the strain relaxation between Si substrate and GaTe. This work opens the way to the fabrication of single-crystal 2D anisotropic semiconductors on standard crystalline wafers that are difficult to be obtained by epitaxial methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.