Abstract
Management and development of water bodies is vital for meeting domestic, agricultural, energy and industrial needs. To that end, dams, artificial channels, lakes and other water structures have been constructed. Management and development of these structures encounter problems of land erosion, reservoir silting, and degradation and aggradation of channel beds, which need to be addressed. Fundamental to these problems are sediment transport, erosion and deposition. Numerical modeling of sediment transport is the best tool to simulate sediment transport in a water body. This study develops a vertically integrated two-dimensional numerical sediment transport model. Sediment transport is simulated in two parts in this model: suspended load and bed load. A fractional step approach is used to solve the two-dimensional advection diffusion equation, which splits the advection-diffusion equation in to two separate parts: advection and diffusion. High resolution conservative algorithm is used to solve the advection part and a semi implicit finite difference scheme is used to solve the diffusion part. Different parallel numerical solvers are developed to solve linear system of equations resulting from diffusion part. Non-uniformity in sediment mixture which is quite common in real world problems is considered. The model is tested for different analytical and laboratory test cases. The model is coded for parallel computers so that enormous power of parallel computers can be exploited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.