Abstract

The direct boundary integral equation technique is used to study in-plane surface amplification of in-plane seismic body waves for the case of an inhomogeneity in a bedrock half-space. In the studied soil configuration, a soil layer rests on a rock half-space which includes a rock inclusion. The rock inclusion considered is a semi-infinite horizontal rock layer in which its upper boundary borders the soil layer. Materials in the soil-rock configuration are considered viscoelastic except for the section of the rock half-space below the level of the rock inclusion which is considered elastic. A parametric study is performed to determine controlling factors for surface displacement due to in-plane body waves. The study investigates varying the stiffness and the thickness of the rock inclusion for a range of frequencies and wave incidence angles. Anti-plane waves for this type of soil-rock configuration have been addressed in a previous article by Heymsfield (Earthquake Engng. Struct. Dyn. 28: 841-855 (1999)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.