Abstract
Two-dimensional renewal functions, which are naturally extensions of one-dimensional renewal functions, have wide applicability in areas where two random variables are needed to characterize the underlying process. These functions satisfy the renewal equation, which is not amenable for analytical solutions. This paper proposes a simple approximation for the computation of the two- dimensional renewal function based only on the first two moments and the correlation coefficient of the variables. The approximation yields exact values of renewal function for bivariate exponential distribution function. Illustrations are presented to compare our approximation with that of Iskandar (1991) who provided a computational procedure which requires the use of the bivariate distribution function of the two variables. A two-dimensional warranty model is used to illustrate the approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.