Abstract
AbstractGiven a matrix of size N, two dimensional range minimum queries (2D-RMQs) ask for the position of the minimum element in a rectangular range within the matrix. We study trade-offs between the query time and the additional space used by indexing data structures that support 2D-RMQs. Using a novel technique—the discrepancy properties of Fibonacci lattices—we give an indexing data structure for 2D-RMQs that uses O(N/c) bits additional space with O(clogc(loglogc)2) query time, for any parameter c, 4 ≤ c ≤ N. Also, when the entries of the input matrix are from {0,1}, we show that the query time can be improved to O(clogc) with the same space usage.KeywordsMinimum ElementQuery TimeSpace UsageLower EnvelopeAdditional SpaceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.