Abstract
The one-loop quantum corrections to geometry and thermodynamics of black hole are studied for the two-dimensional RST model. We chose boundary conditions corresponding to the eternal black hole being in the thermal equilibrium with the Hawking radiation. The equations of motion are exactly integrated. The one of the solutions obtained is the constant curvature space-time with dilaton being a constant function. Such a solution is absent in the classical theory. On the other hand, we derive the quantum-corrected metric (\ref{solution}) written in the Schwarzschild like form which is a deformation of the classical black hole solution \cite{5d}. The space-time singularity occurs to be milder than in classics and the solution admits two asymptotically flat black hole space-times lying at "different sides" of the singularity. The thermodynamics of the classical black hole and its quantum counterpart is formulated. The thermodynamical quantities (energy, temperature, entropy) are calculated and occur to be the same for both the classical and quantum-corrected black holes. So, no quantum corrections to thermodynamics are observed. The possible relevance of the results obtained to the four-dimensional case is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.