Abstract

Two pulse sequences are described for acquisition of two-dimensional, carbon–proton chemical shift correlated 13C NMR spectra by the "phase oscillations to maximize editing technique". One of these sequences provides two-dimensional, carbon–proton chemical shift correlated spectra in which the 1H–1H coupling constants are present in the 1H chemical shift dimension, whereas the other sequence includes a bilinear rotation decoupling unit that removes the vicinal 1H–1H couplings in this dimension. Extensions of these techniques to generation of two-dimensional, carbon–proton chemical shift correlated CH, CH2, and CH313C NMR subspectra from linear combinations of three two-dimensional data sets are described. Decreased residual signals in the edited 2D subspectra have been achieved by Pascal programs that include six floating point coefficients, and a method for their calibration is discussed. Results are reported for troleandomycin (1). Keywords: 13C nuclear magnetic resonance, carbon–proton chemical shift correlation, DEPT, Pascal programs, POMMIE, two-dimensional NMR spectrum editing, troleandomycin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.