Abstract

This paper studies a simple two-dimensional model of a swimmer at low-Reynolds-number near a no-slip wall by utilizing methods of complex analysis. The swimmer is propelled by purely tangential surface deformations and is modeled by moving point singularities. The nonlinear dynamics of the swimmer is formulated explicitly, and its motion near the wall is fully characterized. The results show qualitative agreement with predictions of three-dimensional models and with motion experiments on a robotic swimmer. The success and simplicity of the model suggest that it will provide a simple way to study the dynamics of low-Reynolds-number swimmers in more complicated geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.