Abstract

Taking account of exchange-correlation (XC) effects, we investigate two-dimensional (2D) plasmons (PL's) in a metallic monolayer on a semiconductor surface. The energy dispersion and the energy-loss intensity of the 2D PL are calculated in close relation to a recent experiment by high-resolution electron energy-loss spectroscopy. We evaluate the XC effects by using the local-field-correction theory and by comparing the calculated results among (i) the random-phase approximation, (ii) the Hartree-Fock approximation, and (iii) the approximation originally formulated by Singwi, Tosi, Land, and Sj\"olander. We determine the electron density ${n}_{0}$ and the electron effective mass ${m}^{*}$ so that the results in (iii) accord with the experimental ones. Our calculations give a good description of the energy dispersion and the energy-loss intensity of the 2D PL and the PL decay due to single-particle excitations in the experiment. With an increase in wave number q, the exchange and correlation begin to lower the dispersion curve and make the 2D PL decay at a smaller q value. Our electron system has a high effective density, because it lies on a semi-infinite dielectric medium. However, owing to low dimensionality, the XC effects start to appear remarkably in the 2D PL with an increase in q.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.