Abstract
AbstractArtificial photosynthesis for hydrogen production is an important element in the search for green energy sources. The incorporation of photoactive units into mechanically stable 2D materials paves the way toward the realization of ultrathin membranes as mimics for leaves. Here we present and compare two concepts to introduce a photoactive RuII polypyridine complex into ≈1 nm thick carbon nanomembranes (CNMs) generated by low‐energy electron irradiation induced cross‐linking of aromatic self‐assembled monolayers. The photoactive units are either directly incorporated into the CNM scaffold or covalently grafted to its surface. We characterize RuII CNMs using X‐ray photoelectron, surface‐enhanced Raman, photothermal deflection spectroscopy, atomic force, scanning electron microscopy, and study their photoactivity in graphene field‐effect devices. Therewith, we explore the applicability of low‐energy electron irradiation of metal complexes for photosensitizer nanosheet formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.