Abstract
Sensors capable of detecting organophosphorus (OP) compounds have attracted the most attention owing to severe OP contamination worldwide. Despite many years of research, the developed OP sensors mainly focused on detecting water-soluble OPs in proper environments and the exploration of OP sensors suitable in resource-limited areas is extremely challenging. Here, a simple two-dimensional photonic crystal (2D PC) hydrogel featuring capabilities of effectively quantitative determination of OP compounds is facilely constructed by immobilizing the enzyme acetylcholinesterase (AChE) onto a bovine serum albumin (BSA) protein hydrogel. Owing to the specific interaction between AChE and OP compounds, the OP compounds are easily bound to the hydrogel, triggering volume phase transition and resulting in apparent Debye diffraction ring variations. The resulting hydrogel sensors show a limit of detection (LoD) of 2.23 nM for trichlorfon and 0.07 nM for diethyl methylphosphonate (DMPP), respectively. On the basis of the hydrogel, a responsive organohydrogel is facilely fabricated utilizing a solvent exchange strategy to meet the requirements of applications in harsh environments and detection of the non-water-soluble OP compounds. The organohydrogel sensors, however, demonstrated a LoD of 0.70 μM for trichlorfon and 4.46 μM for DMPP, respectively. This work provides new light on the development of next-generation stable, low-cost, and portable field sensing devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.