Abstract

Two-dimensional (2D) and three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells1,2. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks, leading to degradation in performance over time3,4. We hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration. We explored a set of perovskitoids of varying dimensionality and found that cation migration within perovskitoid-perovskite heterostructures was suppressed compared with the 2D-3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces-this is the result of enhanced octahedral connectivity and out-of-plane orientation. The 2D perovskitoid (A6BfP)8Pb7I22 (A6BfP: N-aminohexyl-benz[f]-phthalimide) provides efficient passivation of perovskite surfaces and enables uniform large-area perovskite films. Devices based on perovskitoid-perovskite heterostructures achieve a certified quasi-steady-state power conversion efficiency of 24.6% for centimetre-area perovskite solar cells. We removed the fragile hole transport layers and showed stable operation of the underlying perovskitoid-perovskite heterostructure at 85 °C for 1,250 h for encapsulated large-area devices in ambientair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.