Abstract

In this paper, we present a new algorithm to generate two-dimensional (2D) permutation vectors’ (PV) code for incoherent optical code division multiple access (OCDMA) system to suppress multiple access interference (MAI) and system complexity. The proposed code design approach is based on wavelength-hopping time-spreading (WHTS) technique for code generation. All possible combinations of PV code sets were attained by employing all permutations of the vectors with repetition of each vector weight (W) times. Further, 2D-PV code set was constructed by combining two code sequences of the 1D-PV code. The transmitter-receiver architecture of 2D-PV code-based WHTS OCDMA system is presented. Results indicated that the 2D-PV code provides increased cardinality by eliminating phase-induced intensity noise (PIIN) effects and multiple user data can be transmitted with minimum likelihood of interference. Simulation results validated the proposed system for an agreeable bit error rate (BER) of 10−9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.