Abstract

With the rapid development of metasurface and metamaterials, the image edge detection based on the optical spatial differential calculation becomes an interesting topic in recent years. There have been a certain number of studies in this region, but most of them are applicable only to one-dimensional optical spatial differential calculation. In this work, a two-dimensional optical differentiator using Pancharatnam-Berry (P-B) phase metasurface is proposed and implemented in optical image two-dimensional edge detection. Based on the principle of the spin-dependent splitting from P-B phase devices, this metasurface is capable of separating the left-handed circularly polarized light from the right-handed circularly polarized light at a certain spatial distance. After filtering out the overlapped linear polarization, the left optical information is the result of the two-dimensional optical spatial differential. Meanwhile, the resolution of the image edge information is adjustable by changing the optic axis distribution of this two-dimensional optical differentiator. These results indicate that our P-B phase metasurface can be applied to the extraction of the optical image two-dimensional edge information, and the extracted edge information is more complete than the previous one-dimensional grating metasurface. For these advantages, this two-dimensional optical differentiator shows great potential applications in ultrafast optical calculation and image processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.