Abstract

Non-Markovian dynamics of a charged particle in a two-dimensional harmonic oscillator linearly coupled to a neutral bosonic heat bath is investigated in an external uniform magnetic field and two perpendicular time-dependent electric fields. The analytical expressions for the time-dependent and asymptotic angular momentum are derived for the Markovian and non-Markovian dynamics. The dependence of the angular momentum on the frequency of the electric field, cyclotron frequency, collective frequency, and anisotropy of the heat bath is studied. The angular momentum (or magnetization) of a charged particle can be ruled by varying the frequency of the electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.