Abstract

In this article, we construct non-self-similar Riemann solutions for a two-dimensional quasilinear hyperbolic system of conservation laws which describes the fluid flow in a thin film for a perfectly soluble anti-surfactant solution. The initial Riemann data consists of two different constant states separated by a smooth curve inx−yx-yplane, so without using self-similarity transformation and dimension reduction, we establish solutions for five different cases. Further, we consider interaction of all possible nonlinear waves by taking initial discontinuity curve as a parabola to develop the structure of global entropy solutions explicitly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.