Abstract

Understanding the exciton dynamics in biological systems is crucial for the manipulation of their function. We present a combined quantum mechanics (QM) and molecular dynamics (MD) simulation study that demonstrates how coherent two-dimensional near-ultraviolet (2DNUV) spectra can be used to probe the exciton dynamics in a mini-protein, Trp-cage. The 2DNUV signals originate from aromatic transitions that are significantly affected by the couplings between residues, which determine exciton transport and energy relaxation. The temporal evolution of 2DNUV features captures important protein structural information, including geometric details and peptide orientations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.