Abstract

Using linear-stability analysis, two-dimensional modulation instability (MI) of plane wave is studied in nonlocal media with competing cubic–quintic (CQ) nonlinearities, which shows that MI can be effectively eliminated by strong nonlocality and competing quintic nonlinearity. Furthermore, propagation properties of higher-order soliton clusters, i.e., Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) solitons are also investigated. Bifurcated solutions of these solitons are obtained analytically with variational approach. We also demonstrate in detail the propagation dynamics of the HG and LG solitons with split-step Fourier transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.