Abstract

Selective laser sintering (SLS) of a two-component metal powder layer on the top of multiple sintered layers by a moving Gaussian laser beam is modeled. The loose metal powder layer is composed of a powder mixture with significantly different melting points. The physical model that accounts the shrinkage induced by melting is described by using a temperature-transforming model. The effects of the porosity and the thickness of the atop loose powder layer with different numbers of the existing sintered metal powder layers below on the sintering process are numerically investigated. The present work will provide a better understanding to simulate much more complicated three-dimensional SLS process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.