Abstract
Ion rejection by composite membranes for RO/NF is performed by an ultrathin polyamide active layer (AL) with non-uniform thickness. Current models explain the solute and water fluxes by concentration and potential in AL of uniform properties, there are studies showing the effects of its topology on permeability. We developed a two-dimensional extension of the solution-friction model, coupling ion and water transport in irregularly-shaped charged AL, with geometry extracted from TEM images. Simulations indicated that AL with pronounced roughness lead to highly non-uniform distribution of ionic fluxes and lead to NaCl permeability greater than obtained by uniform layers. The transmembrane pressure and membrane charge can shift the relative dominance of ion transport mechanisms. In weakly charged membranes diffusion dominates, even at high water fluxes. Electromigration can counteract the convective flux in highly charged membranes. The model revealed the possibility of circular ionic currents within/around the AL. The response of the 2D model to variations in flux and salinity can be identical to the response of a 1D model, providing that the 1D model uses an appropriate equivalent membrane thickness. We provided a method to convert the detailed 2D geometry into a single number that can be computed from images' active layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.