Abstract

AbstractVanadium flow battery (VFB) is one of the most reliable stationary electrochemical energy‐storage technologies, and a membrane with high vanadium resistance and proton conductivity is essential for manufacturing high‐performance VFBs. In this study, a two‐dimensional (2D) MFI‐type zeolite membrane was fabricated from zeolite nanosheet modules, which displayed excellent vanadium resistance (0.07 mmol L−1 h−1) and proton conductivity (0.16 S cm−1), yielding a coulombic efficiency of 93.9 %, a voltage efficiency of 87.6 %, and an energy efficiency of 82.3 % at 40 mA cm−2. The self‐discharge period of a VFB equipped with 2D MFI‐type zeolite membrane increased up to 116.2 h, which was significantly longer than that of the commercial perfluorinated sulfonate membrane (45.9 h). Furthermore, the corresponding battery performance remained stable over 1000 cycles (>1500 h) at 80 mA cm−2. These findings demonstrate that 2D MFI‐type membranes are promising ion‐conductive membranes applicable for stationary electrochemical energy‐storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.