Abstract

α-Glucosidase inhibitors (AGIs) are oral antidiabetic drugs used in the treatment of type Ⅱ diabetes. It is integral to establish methods for AGIs screening. For the detection of α-glucosidase (α-Glu) activity and screening of AGIs, a chemiluminescence (CL) platform was established based on cascade enzymatic reactions. Firstly, the catalytic activity of a two-dimensional (2D) metal-organic framework (MOF) with iron as central metal atoms and 1,3,5-benzene tricarboxylic acid as a ligand (denoted as 2D Fe-BTC) in the luminol-hydrogen peroxide (H2O2) CL reaction were studied. Mechanism studies showed that the Fe-BTC may react with H2O2 to produce ·OH and act as catalase to facilitate the decomposition of H2O2 to produce O2, thus showing good catalytic activity in the luminol-H2O2 CL reaction. The proposed luminol–H2O2–Fe-BTC CL system exhibited an outstanding response to glucose with the aid of glucose oxidase (GOx). The luminol-GOx-Fe-BTC system showed a detection linear range from 50 nM to 10 μM with a detection limit (LOD) of 3.62 nM for glucose detection. Then, the luminol–H2O2–Fe-BTC CL system was applied to the detection of α-glucosidase (α-Glu) activity and screening of AGIs based on cascade enzymatic reactions using acarbose and voglibose as model drugs. The IC50 of acarbose and voglibose was 7.39 μM and 1.89 mM, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call