Abstract

Aqueous zinc batteries (AZBs) show promising applications in large-scale energy storage and wearable devices mainly because of their low cost and intrinsic safety. However, zinc metal anodes suffer from dendrite issues and side reactions, seriously hindering their practical applications. Two-dimensional (2D) materials with atomic thickness and large aspect ratio possess excellent physicochemical properties, providing opportunities to rationally design and construct practically reversible zinc metal anodes. Here, we systematically summarize the recent progress of 2D materials (e.g., graphene and MXene) that can be used to enable dendrite-free zinc metal anodes for AZBs. Firstly, the construction methods and strategies of 2D materials/Zn hybrid anodes are briefly reviewed, and are classified into protecting layers on Zn foils and host materials for Zn. Secondly, various 2D material/Zn hybrid anodes are elaborately introduced, and the key roles played by 2D materials in stabilizing the Zn/Zn2+ redox process are specially emphasized. Finally, the challenges and perspectives of advanced 2D materials for advanced Zn anodes in next-generation AZBs are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.