Abstract
The coplanar electrons and holes in a strong perpendicular magnetic field at low temperatures form magnetoexcitons when theCoulomb interactions between electrons and holes lying on the lowest Landau levels play the main role. However, when the electrons and hole layers are spatially separated, and the Coulomb electron-hole interaction diminishes, a two-dimensional electron gas (2DEG) and a two-dimensional hole gas (2DHG) are formed. Their properties under conditions of the fractional quantum Hall effect can influence the properties of 2D magnetoexcitons. These properties are discussed in the present review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.