Abstract
AbstractThe field of two‐dimensional (2D) magnets has expanded rapidly during the past several years since the first demonstration of intrinsic 2D magnetism in atomically thin CrI3 and Cr2Ge2Te6 in 2017. 2D transition metal chalcogenides (TMCs), a class of strongly correlated materials, have exhibited a wide variety of novel electronic and optical properties, and more recently magnetism. Here, we review recent experimental progress achieved in the growth of 2D magnetic TMC materials using chemical vapor deposition and molecular beam epitaxy methods. Outstanding examples include the demonstration of room temperature intrinsic and extrinsic ferromagnetism in monolayer VSe2, MnSe2, Cr3Te4, V‐doped WSe2, and so on. A brief discussion on the origin of the exotic magnetic properties and emergent phenomena is also presented. Finally, we summarize the remaining challenges and future perspective on the development of 2D magnetic materials for next‐generation spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.