Abstract

In this paper, we propose a new face recognition approach for image feature extraction named two-dimensional locality discriminant preserving projections (2DLDPP). Two-dimensional locality preserving projections (2DLPP) can direct on 2D image matrixes. So, it can make better recognition rate than locality preserving projection. We investigate its more. The 2DLDPP is to use modified maximizing margin criterion (MMMC) in 2DLPP and set the parameter optimized to maximize the between-class distance while minimize the within-class distance. Extensive experiments are performed on ORL face database and FERET face database. The 2DLDPP method achieves better face recognition performance than PCA, 2DPCA, LPP and 2DLPP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.