Abstract
Red blood cell (RBC) motion and trajectories in bifurcated microvessels are simulated using a two-dimensional immersed boundary-lattice Boltzmann method (IB-LBM). A RBC is modeled as a capsule with viscous interior fluid enclosed by a flexible membrane. For the symmetric bifurcation model employed, the critical offset position in the mother branch, which separates the RBC flux toward the two branches, has been calculated. The RBC flux and the hematocrit partitioning between the two daughter branches have also been studied. Effects of the flow-rate ratio, cell deformability and suspending viscosity have been examined. Simulation results indicate that increased cell rigidity and suspending viscosity have counter effects on cell trajectory through a bifurcation: the cell trajectory shifts toward the low flow-rate branch for less deformable cells, and toward the high flow-rate branch for more viscous plasma. These results imply that a higher cell rigidity would reduce the regular phase separation of hematocrit and plasma skimming processes in microcirculation, while an increased viscosity has the opposite effect. This has implications for relevant studies in fundamental biology and biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.