Abstract

The screening and analysis of T cells functional avidity for specific tumor-associated antigens is crucial for the development of personalized immunotherapies against cancer. The affinity and kinetics of a T cell receptor (TCR) binding to the peptide-major histocompatibility complex (pMHC), expressed on tumor or antigen-presenting cells, have shown major implications in T cell activation and effector functions. We introduce an innovative methodology for the two-dimensional affinity analysis of TCR-pMHC in a label-free configuration by employing a multiparametric Surface Plasmon Resonance biosensor (MP-SPR) functionalized with artificial cell membranes. The biomimetic scaffold created with planar lipid bilayers is able to efficiently capture the specific and intact tumor-specific T cells and monitor the formation of the immunological synapse in situ. We have achieved excellent limits of detection for in-flow cell capturing, up to 2 orders of magnitude below the current state-of-the-art for plasmonic sensing. We demonstrate the accuracy and selectivity of our sensor for the analysis of CD8+ T cells bioengineered with TCR of incremental affinities specific for the HLA-A0201/NY-ESO-I157-165 pMHC complex. The study confirmed the significance of providing a biomimetic microenvironment, compared to the traditional molecular analysis, and showed fine agreement with previous results employing flow cytometry. Our methodology is reliable and versatile; thus, it can be applied to more sophisticated photonic and nanoplasmonic technologies for the screening of multiple cell types and boost the development of novel treatments for cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.