Abstract

A numerical simulation of two-dimensional jets was carried out using a SOLA method. The two-dimensional jets were discharged from a slit in a wall at Reynolds numbers below 50. The difference between the calculated flow fields and those of the Bickley jet is due to the non-uniformity of the pressure field near the jet exit at the wall. The jet spreads faster than the Bickley jet. The decay of the streamwise velocity on the center line is more rapid than that of the Bickley jet. The streamwise velocity profile is different from that of the Bickley jet, and a reversed flow is generated in the outer part of the jet. The jet develops instability through two processes. First, small fluctuations grow exponentially. Second, vortical motion such as so-called ‘flapping motion’ of the jet develops in the downstream region. The critical Reynolds number, as determined by the growth of an integral of kinetic energy, is approximately 16.5. Integrals of momentum and pressure are calculated on a control surface in order to confirm the momentum conservation law. When the Reynolds number exceeds 20, the generation of fluctuations contributes to streamwise variations in the integrals of momentum and pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call