Abstract

Abstract We computationally investigated potential piezoelectrocatalysts, two-dimensional (2D) Janus MXTe (M = Hf, Zr; X = S, Se). The structural and electronic properties, synthesis feasibility, piezoelectric properties, and hydrogen evolution reaction were calculated. Our results showed that these 2D Janus MXTe are narrow-gap semiconductors, indicating great conductivity for electrocatalysis. The feasibility of synthesis was comparable to the already synthesized Janus materials. To exhibit a piezoelectrocatalytic effect, the material has to be piezoelectric and catalytically effective simultaneously. As the Janus structure breaks the centrosymmetry, the considered MXTe are intrinsically piezoelectric. We therefore calculated the dipole moments and the variation of out-of-plane polarization upon strain. The computed piezoelectric coefficient e 31 is within the same order of magnitude as that of other Janus 2D materials. Finally, although pristine 2D Janus MXTe were inert to hydrogen evolution reaction, incorporation of single-atom defects was found to boost hydrogen adsorption significantly. The catalytic efficacy can be further tuned by biaxial tensile strain, effectively controlling the Gibbs free energy of adsorption to be close to the thermoneutral value that is indicative of an excellent hydrogen evolution reaction activity, at least for ZrSTe Janus monolayer. In summary, this work proposed and comprehensively investigated a new class of possible piezoelectrocatalysts, 2D Janus materials, which is feasible to be synthesized, catalytically effective, and has great conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.