Abstract
Spatial comprehensive two-dimensional liquid chromatography (xLC×xLC) may be an efficient approach to achieve high peak capacities in relatively short analysis times, thanks to parallel second-dimension separations [1,2]. A key issue to reach the potential of xLC×xLC is to achieve adequate flow control and confinement of the analytes to the desired regions, i.e. confinement in the first-dimension direction and subsequently homogeneous flow in the second dimension. To achieve these goals we propose the TWIST concept (TWo-dimensional Insertable Separation Tool), a modular device that includes an internal first-dimension (1D) part that is cylindrical and rotatable. This internal part features a series of through-holes, each of which is perpendicular to the direction of the 1D flow. The internal part is inserted in the cylindrical casing of the external part. The internal diameter of the casing is marginally larger than the external diameter of the internal part. The external part also comprises a flow distributor and second-dimension (2D) channels. During the 1D injection and development, the channel is placed in a position where the through-holes are facing the wall of the external part, such that the liquid remains confined within the 1D channel. Thereafter, to realize the transfer to the second dimension (2D injection), the 1D channel is rotated, so that the holes of the internal part are aligned with the holes on the external part, allowing a transversal flow of the 2D mobile phase from the distributor through the 1D channel and eventually into the 2D area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.