Abstract

The effect of hydrodynamic interactions on the collective locomotion of fish schools is still poorly understood. In this paper, the flow-mediated organization of two tandem flapping foils, which are free in both the longitudinal and lateral directions, is numerically studied. It is found that the tandem formation is unstable for two foils when they can self-propel in both the longitudinal and lateral directions. Three types of resultant regular formations are observed, i.e. semi-tandem formation, staggered formation and transitional formation. Which type of regular formation occurs depends on the flapping parameters and the initial longitudinal distance between the two foils. Moreover, there is a threshold value of the cycle-averaged longitudinal distance (which is approximately 0.55) below which both velocity enhancement and efficiency augmentation can be achieved by two foils in regular formations. The results obtained here may shed some light on understanding the emergence of regular formations of fish schools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.