Abstract

We construct variational hierarchical two-dimensional models for elastic, prismatic shells of variable thickness vanishing at boundary. With the help of variational methods, existence and uniqueness theorems for the corresponding two-dimensional boundary value problems are proved in appropriate weighted functional spaces. By means of the solutions of these two-dimensional boundary value problems, a sequence of approximate solutions in the corresponding three-dimensional region is constructed. We establish that this sequence converges in the Sobolev space H1 to the solution of the original three-dimensional boundary value problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.