Abstract
Highly specific capture of phosphopeptides, especially multi-phosphopeptides, from complex biological samples is critical for comprehensive phosphoproteomic analysis, but it still poses great challenges due to the lack of affinity material with ideal enrichment efficiency. Here, two-dimensional (2D) covalent organic framework (COFs) nanosheets was applied for selective separation of phosphopeptides for the first time. Particularly, by incorporating guanidinium units, the 2D guanidinium-based COF nanosheets (denoted as TpTGCl CONs) exhibited controllable and specific enrichment performance towards global/multi-phosphopeptides. TpTGCl CONs was easy to prepare and showed large surface area, low steric hindrance, abundant accessible interaction sites and high chemical stability. Taking these merits together, TpTGCl CONs exhibited excellent efficiency for phosphopeptide enrichment, such as low detection limits (0.05 fmol μL−1 for global phosphopeptides and 0.1 fmol μL−1 for multi-phosphopeptides), high selectivity (1:5000 of molar ratios of β-casein/BSA for both global and multi-phosphopeptides), high adsorption capacity (100 mg g−1 for global phosphopeptides and 50 mg g−1 for multi-phosphopeptides). Furthermore, TpTGCl CONs could be reused due to the high chemical stability. In addition, TpTGCl CONs were successfully applied to controllable and specific capture of endogenous global/multi-phosphopeptides from human serum and human saliva, indicating its good potential in rapid and sensitive detection of biomarkers from biological fluid. Finally, rat liver protein digest was used to confirm the high specificity of TpTGCl CONs towards multi-phosphopeptides and demonstrated its potential as an ideal enrichment probe for comprehensive phosphoproteomic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.