Abstract
Semiconducting graphyne is a two-dimensional (2D) carbon allotrope with high mobility, which is promising for next generation all-carbon field effect transistors (FETs). In this work, the electronic properties of van der Waals heterostructure consists of 2D graphyne and graphene (GY/G) were studied from first-principles calculations. It is found that the band dispersion of isolated graphene and graphyne remain intact after they were stacked together. Due to the charge transfer from graphene to graphyne, the Fermi level of the GY/G heterostructure crosses the VB of graphene and the CB of graphyne. As a result, n-type Ohmic contact with zero Schottky barrier height (SBH) is obtained in GY/G based FETs. Moreover, the electron tunneling from graphene to graphyne is found to be efficient. Therefore, excellent electron transport properties can be expected in GY/G based FETs. Lastly, it is demonstrated that the SBH in the GY/G heterostructure can be tune by applying a vertical external electric field or doping, and the transition from n-type to p-type contact can be realized. These results show that GY/G is potentially suitable for 2D FETs, and provide insights into the development of all-carbon electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.