Abstract

The mechanism governing grain boundary sliding (GBS) accommodated by dislocation and microstructural evolution in regions II/III and III was studied to understand superplasticity. Two-dimensional GBS that occurred during high-temperature shear in oxide dispersion strengthened ferritic steel exhibiting an elongated and aligned grain structure was analyzed using surface markers drawn by focused ion beams. In addition, the accommodating dislocation structure was evaluated by electron back-scattered diffraction and electron channeling contrast imaging. In the initial stage of deformation, GBS triggered dislocation slippage in “mantle” areas near grain boundaries. These mantles tended to appear around GBS-resistant areas such as curved boundaries and grain protrusions. Next, the mantle dislocations generated dislocation walls before forming low-angle boundaries (LABs) along {110} crystallographic planes via dynamic recovery at the core/mantle boundaries. Finally, secondary GBS or rigid rotation occurred at the newly formed LABs to compensate for the initial GBS and resulted in continuous dynamic recrystallization. These mantle dislocation activities and substructural evolution mechanisms were graphically modeled and validated by comparison with previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.