Abstract

We performed scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) experiments for Dy adsorbed on Mo(1 1 2) in the monolayer regime in order to clarify the concentration dependent reordering of the surface glass that exists for coverages above 0.58 of a monolayer (ML) after annealing to temperatures higher than 400 K. The partial reaction model developed earlier is corroborated. The Dy defect structure formed initially in Dy–Mo surface alloy acts as nucleation sites for Dy so that clusters with a wide distribution of lateral distances are formed, as found in particular at a coverage of 0.28 ML. The change in bonding character at coverages above 0.58 ML leads to reordering of the defects and the concentration dependent modulation of the adsorbed Dy layers. Examples at coverages of 0.7, 0.9 and 1.15 ML are shown and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.