Abstract

Protein oxidation is evaluated in rainbow trout muscle by labeling protein carbonyls with 2,4-dinitrophenyl hydrazine (DNPH) followed by immunoblotting of proteins separated by SDS-PAGE or two-dimensional gel electrophoresis (2D-GE). The carbonylation level is accessed on proteins in a whole muscle homogenate or proteins soluble in a high-salt or low-salt buffer. Spoilage-related changes in carbonylation are followed in the high-salt-protein and low-salt-protein fractions by 2D immunoblotting, which reveals increases regarding total number and intensity of carbonylation in both protein fractions for fish kept at room temperature for 48 h. The major amount of carbonylated proteins is found among the high-salt-soluble proteins, and this protein fraction is also responsible for the biggest increase in carbonylation during fish tainting. The results give an estimate of the level of protein carbonylation in rainbow trout and reveal that oxidation increases for a distinct number of proteins during tainting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.