Abstract

We study the two-dimensional gauge theory of the symmetric group S n describing the statistics of branched n-coverings of Riemann surfaces. We consider the theory defined on the disc and on the sphere in the large-n limit. A non trivial phase structure emerges, with various phases corresponding to different connectivity properties of the covering surface. We show that any gauge theory on a two-dimensional surface of genus zero is equivalent to a random walk on the gauge group manifold: in the case of S n , one of the phase transitions we find can be interpreted as a cutoff phenomenon in the corresponding random walk. A connection with the theory of phase transitions in random graphs is also pointed out. Finally we discuss how our results may be related to the known phase transitions in Yang-Mills theory. We discover that a cutoff transition occurs also in two dimensional Yang-Mills theory on a sphere, in a large N limit where the coupling constant is scaled with N with an extra log N compared to the standard ‘t Hooft scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.