Abstract
We have developed a 12-cm-diameter Ar gas Z-pinch load, which produces two annular gas shells and a center gas jet. The two-dimensional (2-D) gas density profiles of the load, in r-/spl theta/ and r-z planes, were measured with submillimeter spatial resolutions using the planar-laser-induced fluorescence (PLIF) method, for conditions used in Z-pinch experiments. Due to interactions between the shells, the net gas density profile differs from the superposition of the individual shell profiles. Narrow density peaks are observed both at smaller and larger radii than the radius where the shells come in contact with each other. Two-dimensional flow velocity distributions are determined from the displacements between the fluorescence and later time phosphorescence images. The measured stream velocities of argon gas puffs are 650 /spl plusmn/ 20 m/s, higher than the ideal gas velocity due to the formation of clusters in the supersonic gas flow. Indeed, clusters were observed in earlier Rayleigh scattering experiments. The gas measurements of the initial phase using the PLIF will be combined with other density measurements of the implosion and pinch phases to better understand the implosion dynamics and to provide initial conditions for simulation codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.