Abstract

In this paper we propose a model for the two dimensional fluid with one site-site associating point. We studied its structural and thermodynamic properties by the Monte Carlo computer simulations, the site-site integral equation theory (RISM), the Wertheim's thermodynamic perturbation theory (TPT) and the Wertheim's integral equation theory (WIET) for associative liquids. The model can have arbitrary position of the associating point from the center of particles. All particles have Lennard-Jones core while interactions between associating points are modeled as Gaussian like potential where the interaction depends only on the distance between sites. The methods were used to study the thermodynamic and structural properties as a function of the position of associating point, temperature and density. The accuracy of the analytic theories were checked by comparing the theoretical results with the corresponding Monte Carlo ones. The theories are quite accurate for cases when the associating point is on the surface and only dimers can be formed. In this case, the theories correctly predict the pair correlation functions of the model, internal energy, ratios of free and bonded particles and chemical potential. This is no longer true when associating point is away from the surface of particles and the higher clusters are formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call