Abstract
The decomposition and identification of signals are crucial for flow vector acquisition in a multi-dimensional measurement. Here, we proposed a two-dimensional (2D) flow vector measurement system based on all-fiber laser feedback frequency-shifted multiplexing technology. The reliable performance of the system is characterized by experimental verification and numerical simulation. An orthogonal dual-beam structure is employed to eliminate the impact of an unknown incident angle in the practical application. Meanwhile, the vector velocity signals in 2D can be decomposed into one-dimensional (1D) scalar signals by adopting the frequency-shifted multiplexing, which makes it easy to obtain the vector information and velocity distribution of fluid motion through the self-mixing interference frequency spectrum. Moreover, the measured flow rates present a high linearity with syringe pump speeds ranging from 200 to 2000 μL/min, and the velocity information of the different incidence angles is easily obtained with high precision. This work may pave the way for the acquisition and processing of multi-dimensional flow vector signals, with potential applications in biomedical monitoring and microflow velocity sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.