Abstract

With the advent of the big data era, applications are more data-centric and energy efficiency issues caused by frequent data interactions, due to the physical separation of memory and computing, will become increasingly severe. Emerging technologies have been proposed to perform analog computing with memory to address the dilemma. Ferroelectric memory has become a promising technology due to field-driven fast switching and non-destructive readout, but endurance and miniaturization are limited. Here, we demonstrate the α-In2Se3 ferroelectric semiconductor channel device that integrates non-volatile memory and neural computation functions. Remarkable performance includes ultra-fast write speed of 40 ns, improved endurance through the internal electric field, flexible adjustment of neural plasticity, ultra-low energy consumption of 234/40 fJ per event for excitation/inhibition, and thermally modulated 94.74% high-precision iris recognition classification simulation. This prototypical demonstration lays the foundation for an integrated memory computing system with high density and energy efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.