Abstract

Layered ternary metal chalcogenides and their hybrids are receiving fabulous attention as electrode materials for supercapacitors. Herein, we report a facile one-step hydrothermal preparation of layered famatinite/graphene hybrid-sheets and explored its electrochemical properties as a negative electrode for supercapacitors. The mechanism of formation of 2D/2D hybrid heterostructures comprising famatinite and graphene sheets is discussed using physico-chemical characterization such as X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopic analyses respectively. The famatinite/graphene hybrid-sheet electrode demonstrates high specific capacitance of about 527.76 F g−1 (specific capacity of 205.24 mAh g−1) which is 5- and 3- fold higher compared to the bare famatinite and graphene electrodes. This astonishing performance of famatinite/graphene hybrid electrode is due to the enhancement of electrolyte ion insertion/extraction kinetics compared to that of bare famatinite and graphene electrodes, as evidenced using Dunn's method. Further, the famatinite/graphene symmetric supercapacitor exhibits an excellent energy density of about 13.45 Wh kg−1 with the maximal power density of 1250 W kg−1. Additionally, famatinite/graphene symmetric supercapacitor displays high cyclic stability of 95.5% with marvellous rate capability, indicating great promise towards the commercialization of energy storage device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.