Abstract

We have derived expressions for the free energies of the densely packed [110] and 100% kinked [010] step edges of Cu(001), including both meandering and vibrational entropy terms. The meandering entropy is calculated by taking into account nearest-neighbor and next-nearest-neighbor interactions between the Cu atoms. The vibrational entropy is determined within the framework of an isotropic Einstein oscillator. By using the earlier obtained kink creation energy by Giesen, Steimer, and Ibach [Surf. Sci. 471, 80 (2001)] and taking the strength of the next-nearest-neighbor interaction as the only fitting parameter, we obtain perfect agreement between the ratio of the calculated and experimentally determined ratio of the step free energies (i.e., ${F}_{[010]}{/F}_{[110]}).$ Moreover, in contrast to the Ising model we predict that the two-dimensional equilibrium Cu(001) island shape at $T=0\mathrm{K}$ is not a perfect square.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.