Abstract

Although patterned media storage (PMS) is a promising candidate for ultrahigh-capacity magnetic data storage, as the capacity of PMS increases, the bit error rate (BER) performance of the system is degraded by increased two-dimensional intersymbol interference (2D-ISI), which results from intertrack interference (ITI), intersymbol interference (ISI), and noise. To improve the system performance under these adverse effects and to increase the capacity, in this paper, we propose to use and/or devise two-dimensional equalization/detection techniques: iterative decision feedback detection (IDFD) and two-dimensional generalized partial response equalization, which is optimized in minimum mean square error (MMSE), followed by one-dimensional Viterbi algorithm (2D-GPR/1D-VA). We evaluate the performance of the proposed methods by using numerical experiments under different amounts of 2D-ISI and noise. Simulation results suggest that under high storage density, the performance of the IDFD is improved by using more iterations and that under the same computational load, 2D-GPR/1D-VA performs better than IDFD. 2D-GPR/1D-VA, therefore, is a good candidate for ultrahigh-capacity PMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.