Abstract

Many-particle electron-phonon interaction effects in two-dimensional electron gases are investigated within a Born–Markov approach. We calculate the electron-phonon interaction on a microscopic level to describe relaxation processes of quantum confined electrons on ultrafast time scales. Typical examples, where two-dimensional electron gases play a role, are surfaces and two-dimensional nanostructures such as graphene and quantum wells. In graphene, we find nonequilibrium phonon generation and ultrafast cooling processes after optical excitation. Electron relaxation dynamics at the silicon (001) 2×1 surface exhibits two time scales, corresponding to intrasurface and inside bulk-scattering processes. For GaAs quantum wells, we present broad emission spectra in the terahertz range assisted by LO-phonons of the barrier material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.