Abstract
A two-dimensional calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses classical processes of parallel transport along the magnetic field and cross-field drifts together with anomalous radial diffusion, including perpendicular ion viscosity. The self-consistent electrostatic potential is calculated on both sides of the magnetic separatrix via quasineutrality and current continuity. Outside the separatrix, the model extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms—from anomalous viscosity, collisional damping, inertia, and ∇B drifts—contribute to determining the potential. The model rigorously enforces cancellation of gyroviscous and magnetization terms from the transport equations. The results emphasize the importance of E×B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field profiles at the outer midplane show strong variation with the magnitude of the anomalous diffusion coefficients and the core toroidal rotation velocity, indicating that shear stabilization of edge turbulence can likewise be sensitive to these parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.