Abstract

A novel two-dimensional (2-D) direction-of-arrival (DOA) estimation approach based on matrix reconstruction is proposed for coherent signals impinging on two parallel uniform linear arrays (ULAs). In the proposed algorithm, the coherency of incident signals is decorrelated through two equivalent covariance matrices, which are constructed by utilizing cross-correlation information of received data between the two parallel ULAs and the changing reference element. Then, the 2-D DOA estimation can be estimated by using eigenvalue decomposition (EVD) of the new constructed matrix. Compared with the previous works, the proposed algorithm can offer remarkably good estimation performance. In addition, the proposed algorithm can achieve automatic parameter pair-matching without additional computation. Simulation results demonstrate the effectiveness and efficiency of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.